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1. INTRODUCTION 

Meranti and keruing wood are two types of tropical 
hardwood that are widely used in construction, parti-
cularly as a raw material for the building and housing 
industries (Lee et al., 2024; Viholainen et al., 2021). 
Wood is a renewable resource, has great mechanical 
properties, is an excellent thermal insulator, and is easy 
to shape and join (Popovski et al., 2014).

Several pieces of wood can be nailed together to form 
a specific structure to achieve the assembly convenience 
of wood (Han et al., 2023). The advancement and 
enhancement of connectivity technologies utilizing nails 
will additionally expand the potential of construction 
methods involving wood (Pang et al., 2017). Local 
carpenters in East Kalimantan frequently use both 
ordinary and “ulin nail” or concrete nails to join wood. 
Concrete nails are classified as “square boat nails”. They 
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have a square cross-section, as opposed to the round 
cross-section of ordinary nails. For the same length, 
ordinary nails have a marginally smaller cross section 
than concrete nails (Cohen et al., 2015). Galvanized 
concrete nails are more expensive than ordinary nails 
(Amayreh, 2022).

After the wood has been fastened, nails that are left 
in place for an extended period of time will begin to 
corrode. If left undetected, corrosion of the nails can 
cause the nail joints to come loose (Takanashi and 
Sawata, 2017), as a result of metal corrosion, there has 
been a decrease in weight (Suprapti et al., 2020). 
Knowing the rate at which nails corrode will help avoid 
the danger of disconnecting a joint where the nails have 
corroded.

Each species of wood is distinguished by its anato-
mical structure, physical properties, mechanical proper-
ties, and chemical properties (Berglund and Burgert, 
2018) such as wood extractives. Some wood extractives, 
such as phenolic compounds (Yeon et al., 2019), inhibit 
corrosion (Aourabi et al., 2021), while others, such as 
organic acid compounds such as fatty acid and resin 
acid in heartwood (Arisandi et al., 2024), accelerate 
corrosion (Maraveas, 2020). Corrosion of metals embed-
ded in wood is affected by three types of extractives: 
organic acids, tannins and phenols (Abo Elgat et al., 
2021). Unfortunately, the amount and types of extracti-
ves in keruing and meranti wood sold in lumber stores 
and their effect on the corrosion rates of ordinary and 
concrete nails, have not been investigated. The purpose 
of this study was to determine the amount and types of 
extractives in keruing and meranti wood sold in lumber 
stores, and their effects on the corrosion rates of ordi-
nary and concrete nails based on electrochemical test.

2. MATERIALS and METHODS

Meranti wood sample was purchased from Mustaqim 
Proprietorship lumber store, and keruing wood sample 

was purchased from Putera Harapan Ibu Proprietorship 
lumber store, in Samarinda City, East Kalimantan 
Province, Indonesia. The wood samples purchased from 
the lumber stores, each measuring 4 × 6 × 400 cm, 
consisted of two pieces per wood species. Sawdust was 
produced by cutting the wood at every 100 cm intervals 
using a circular saw.

The extractive content of the wood was evaluated 
according to TAPPI 204 cm-97 (Arango-Perez et al., 
2023). The thimble containing 2 ± 0.1 grams of 40–60 
mesh sawdust was placed in the Soxhlet extractor 
containing 300 mL of methanol. The duration of the 
extraction process was four to five hours. The extracted 
sawdust was dried in an oven at 103 ± 2℃ to determine 
its extractive free weight. The extracted solution was 
filtered using Whatman microporous filter paper with a 
pore size of 0.45 μm and a diameter of 47 mm. The 
resulting filtrate was filtered and divided into two 
portions, 200 mL for electrochemical testing and 100 
mL for gas chromatograph-mass spectrometer (GC-MS) 
testing.

The chemical compound content of the wood extrac-
tives was determined by GC-MS (Mangindaan et al., 
2017; Yeon et al., 2019). A rotary evaporator was used 
to concentrate 100 mL of the Soxhlet extraction filtrate, 
yielding 8 g of concentrated extract, which was used for 
GC-MS analysis. A Shimadzu QP 2010 GC-MS was 
used for the measurement. The GC-MS was equipped 
with a Restek column, RTx-5MS capillary column (30 m 
× 0.25 mm I.D. and 0.25 μm). The RTx-5MS column 
has a working temperature range of 50℃–300℃, initial 
temperature 50℃ (hold 5 min) to final temperature 
300℃ in increments of 5℃/min (hold 12 min); interface 
temperature 270℃; split ratio 1:0; and pressure 108.1 
kPA; helium gas as carrier gas. GC-MS readings indi-
cate retention time, chemical constituents, and concen-
trations (Guerrero-Chanivet et al., 2020). The National 
Institute of Standards and Technology (NIST) library 
database version 11 was used for component identifi-
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cation (Vieira et al., 2021). Chemical compound concen-
trations were determined from the peak area of the 
GC-MS graph (Baccolo et al., 2021).

Four-inch ordinary nails and concrete nails were pur-
chased from a hardware store in Samarinda. The ends 
and heads of the nails were then cut to a length of four 
centimeters for use in the electrochemical test. The 
treatment for electrochemical testing is shown in Table 1. 
Each treatment was tested in three replicates.

Electrochemical testing using a potentiostat/galvano-
stat to determine the corrosion rate was in accordance 
with ASTM 199-09 (Almeraya-Calderon et al., 2024). 
The electrolyte liquid was derived from meranti and 
keruing wood extracts produced by Soxhlet extraction. 
The electrochemical test results show the corrosion 
currents, potentials, and rates (Nyby et al., 2021). The 
electrochemical test results are reported as means with 
SDs.

3. RESULTS and DISCUSSION

Based on TAPPI 204 cm-97 test, the extractives 
content of keruing wood was 3.83% and meranti wood 
was 1.97%. Keruing wood contained 3.83% extractives 
and meranti wood contained 1.97% extractives. In com-
parison, the heartwood of the base of Shorea retusa had 
an extractive content of 4.69%–5.87%, Shorea macro-
phylla had an extractive content of 2.35%–4.27%, and 
Shorea macroptera had an extractive content of 10.62%
–11.37% (Yunanta et al., 2014). Meanwhile, the extrac-
tive content of Dipterocarpus glabrigemmatus wood was 

8.8%, Dipterocarpus stellatus was 6.8%, and Diptero-
carpus pachyphyllus was 7.7% (Dewi and Supartini, 
2017). The study results showed that the extractive 
content of the wood test samples had a lower value than 
the reference. The reference's extractive content was 
measured from felled tree trunks, whereas the study’s 
extractive content was assessed from sawn wood sold in 
wood shops. Cutting wood from logs to lumber and the 
time the lumber is stored or stacked in the workshop 
may result in reduced wood extractives (Chen et al., 
2020). The GC-MS test results of keruing wood extrac-
tives are shown in Table 2.

The keruing wood extractives contained a lot of 
oleoresin. The oleoresin in Dipterocarpus gracilis is 
dominated by caryophyllene and caryophyllene oxide 
(Fernandes and Maharani, 2019), in Dipterocarpus gran-
diflorus by β-bisabolene (Wahyudianto et al., 2020), 
and in Dipterocarpus verrucosus by caryophyllene and 
α-humulene (Fernandes and Maharani, 2022). Based on 
Table 2, keruing wood extractives contained coumaran 
(27.28%), sitostenone (17.26%), methyl p-coumarate 
(12.11%), antiarol (9.57%), and γ-sitosterol (9.86%). 
Coumaran compounds can be natural inhibitors to 
prevent corrosion in mild steel in 0.5 M HCl solution 
(Yaqoob et al., 2023). Methyl p-coumarate inhibits 
corrosion on metal surfaces by an anionic mechanism 
(Udabe et al., 2021). Whereas, antiarol compounds can 
inhibit corrosion by preventing excessive oxidation 
(Sprang et al., 2022). The γ-sitosterol compound can 
adhere parallel to the metal surface and is supported by 
the activity of heterooxygen atoms, aromatic carbon 
groups and the presence of double bonds, so it can 
effectively prevent corrosion reactions on metal surfaces 
(Rehioui et al., 2023). Meanwhile, sitostenone is a 
ketone derivative of sitosterol (Szakiel et al., 2022), so 
its corrosion inhibition mechanism is similar to that of 
sitosterol compounds. The results of GC-MS analysis of 
meranti wood extractives are shown in Table 3.

Shorea leprosula wood contains guaiacol, furfural, 

Table 1. Electrochemical test treatment

Code Wood extractives Nail

CK Keruing Ordinary nail

CM Meranti Ordinary nail

UK Keruing Concrete nail

UM Meranti Concrete nail
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levoglucosan and 4-vinylguaiacol (Sulistyo et al., 2017). 
Based on Table 3, the investigated meranti wood was 
dominated by 1,8-nonadyine 76.15%. Compound 1,8- 
nonadiyne, can form a thin layer on metal surfaces to 
inhibit corrosion (Yoshinobu et al., 2018). Another ex-
tractive compound in meranti wood that acts as another 
inhibitor is 1-(4-Acetamidoanilino)-3,7-dimethylbenzo 
(4,5) imidazo (1,2-a) pyridine-4-carbonitrile. Derivatives 
of imidazo (1,2-a) pyridine effectively inhibit corrosion 

because metal surfaces readily absorb the proton transfer 
(Salim et al., 2019). The effect of wood extractives on 
the corrosion rate of ordinary nails and concrete nails is 
shown in the following Tafel plot in Fig. 1.

According to the Tafel plot, concrete nails corroded 
slower than ordinary nails. Ordinary nails are an indus-
trial product with a low iron content and a high 
susceptibility to corrosion (Santoso et al., 2022). Con-
crete nails, on the other hand, are high-quality industrial 

Table 2. Results of GC-MS analysis of keruing wood extractives

Retention time 
(min) Chemical name Concentration 

(%)
Functional chemical 

structure
Corrosion inhibitor or 

accelerator

12.89 Coumaran 27.28 Cyclic structure
O-structure Corrosion inhibitor

21.10 Antiarol 9.57 Cyclic structure
O-structure Corrosion inhibitor

24.54 4-((1E)-3-Hydroxy-1-propenyl)-2-met
hoxyphenol 4.01

Cyclic structure
O-structure

Double bond
Corrosion inhibitor

24.70 Methyl p-coumarate 12.11
Cyclic structure

O-structure
Double bond

Corrosion inhibitor

25.55
2-Cyclohexen-1-one, 

4-hydroxy-3,5,6-trimethyl-4-(3-oxo-1-
butenyl)-

9.33
Cyclic structure

O-structure
Double bond

Corrosion inhibitor

28.47 Elaol 5.87
Cyclic structure

O-structure
Double bond

Very weak acid,  
corrosion accelerate

29.04 3-(2,5-Dimethoxyphenyl)-propionic 
acid 2.40

Cyclic structure
O-structure

Double bond

Weak acid, corrosion 
accelerator

36.80 Hexadecanal 2.30
Aliphatic structure

O-structure
Double bond

Corrosion inhibitor

49.45 γ-Sitosterol 9.86
Cyclic structure

O-structure
Double bond

Corrosion inhibitor

53.40 Sitostenone 17.26
Cyclic structure

O-structure
Double bond

Corrosion inhibitor

GC-MS: gas chromatograph-mass spectrometer.
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nails manufactured from stainless steel with a surface 
coating (Du et al., 2015). The coating layer consists of 
corrosion-resistant substances, such as (Pb) lead, (Zn) 
zinc, (Cd) cadmium and (Sb) antimony (Bram et al., 
2020). The corrosion rate of low-quality nails ranges 
from 0.12 to 0.06 mm/year (Li et al., 2011). The 
corrosion rate of steel nails is 90 μm/year and that of 
aluminum is 60 μm/year (Zelinka and Rammer, 2009).

Based on Table 2, chemical compounds with cyclic 
carboxylic groups, i.e., coumaran, antiarol, methyl 
p-coumarate, 2-cyclohexen-1-one, 4-hydroxy-3,5,6-trime-
thyl-4-(3-oxo-1-butenyl), γ-sitosterol, sitostenone, and 
only one compound with an aliphatic or straight-chain 
carbon structure, namely hexadecanal (2.30%), domina-
ted the extractives of keruing wood. Whereas, based on 
Table 3, the meranti wood extractives were dominated 

Table 3. Results of GC-MS analysis of meranti wood extractives

Retention time 
(min) Chemical name Concentration 

(%)
Fungtional chemical 

structure
Corrosion inhibitor or 

accelerator

4.02
1-(4-Acetamidoanilino)-3,7-dimethylb
enzo[4,5]imidazo[1,2-a]pyridine-4-car

bonitrile
4.75

Cyclic structure
O-structure
N-structure

Double bond

Corrosion inhibitor

4.15 1,8-Nonadiyne 76.15 Aliphatic structure
Triple bond Corrosion inhibitor

24.53 4-((1E)-3-Hydroxy-1-propenyl)-2-met
hoxyphenol 0.80

Cyclic structure
O-structure

Double bond
Corrosion inhibitor

28.37 Elaol 2.77
Cyclic structure

O-structure
Double bond

Very weak acid, 
corrosion accelerator

28.45 Elaol 2.89
Cyclic structure

O-structure
Double bond

Very weak acid, 
corrosion accelerator

38.70 7-(3,4-Methylenedioxy)-tetrahydroben
zofuranone 0.68

Cyclic structure
O-structure

Double bond
Corrosion inhibitor

38.99 Sulfurous acid, cyclohexylmethyl 
pentadecyl ester 0.73

Cyclic structure
O-structure
S-structure

Acid, corrosion 
accelerator

41.77 Methyl hexacosanoate 0.74
Aliphatic structure

O-structure
Double bond

Corrosion inhibitor

44.78 3-β,17-β-Dihydroxyandrost-5(10)-ene 
17-propionate 0.68

Cyclic structure
O-structure

Double bond
Corrosion inhibitor

49.51 γ-Sitosterol 9.80
Cyclic structure

O-structure
Double bond

Corrosion inhibitor

GC-MS: gas chromatograph-mass spectrometer.
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by compounds with aliphatic or straight-chain carbon 
groups, i.e., 1,8-nonadiyne with 76.15% and methyl 
hexacosanoate with 0.74%. As corrosion inhibitors, 
compounds with a cyclic carbon structure have tre-
mendous potential (Verma and Quraishi, 2021) as they 
inhibit corrosion more effectively than aliphatic or 
straight-chain carbon structures (Alamiery et al., 2021).

According to Table 2, the keruing wood extractives 
contained 5.87% elaol and 2.40% 3-(2,5-dimethoxy-
phenyl) propionic acid. Elaol is slightly soluble in water 
and is weakly acidic when dissolved in water. On the 
other hand, 3-(2,5-dimethoxyphenyl) propionic acid is a 
weak acid that dissolves in water based on an equili-
brium reaction. From Table 3, it can be seen that 
meranti wood extractives contained 5.66% elaol and 
0.73% sulfurous acid, cyclohexylmethyl pentadecyl ester, 

which is acidic and accelerates the corrosion rate. 
Therefore, the fastest corrosion rate occurred in ordinary 
nails on meranti wood extractive media than keruing 
wood as shown in Fig. 1.

According to Table 4, corrosion potential is the 
potential at which the anodic and cathodic reaction rates 
are equal, meaning that the measured current changes 
sign at this potential when the potential is scanned as in 
potentiodynamic polarisation. Current density is the 
current density on the metal surface describing the 
general corrosion rate of metals (Nyby et al., 2021). 
Lower corrosion current density shows that the metal 
corrodes faster (Sohail et al., 2020).

4. CONCLUSIONS

Keruing wood contained 3.83% extractives, domina-
ted by cyclic carbon structure, such as coumaran. Meranti 
wood contained 1.97% extractives, dominated by alipha-
tic carbon structure such as 1,8-nonadiyne. The presence 
of organic acids, sulfurous acid, cyclohexylmethyl penta-
decyl ester, in meranti wood extractives accelerates the 
corrosion rate faster than keruing wood extractives. The 
lowest corrosion rate based on electrochemical tests was 
on concrete nail in keruing wood extractive media, 
which was 0.65 μm/year, and the highest corrosion rate 
was on ordinary nail in meranti wood extractive media, 
3,74 μm/year. The nail corrosion rate in keruing wood 
extractive media is lower than that in meranti wood 
extractive media.

In general, wood containing acidic extractives causes 

Fig. 1. Tafel plot corrosion test of wood extractives 
effect on the corrosion rate of ordinary nails and 
concrete nails. 

Table 4. The corrosion test of ordinary nails and conrete nails in wood extractive media

Code Corrosion currents density (μA/cm2) Corrosion potentials (μV) Corrosion rate (μpy)

CM  55.00 ± 2.03 31.93 ± 1.37 3.74 ± 0.15

CK  73.26 ± 3.74 61.18 ± 1.77 0.72 ± 0.02

UM 473.85 ± 1.94 14.28 ± 0.51 1.96 ± 0.07

UK 467.65 ± 2.43 47.53 ± 1.85 0.65 ± 0.02
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faster nail corrosion rates. Therefore, it is recommended 
to use steel nails with an anti-rust coating. Future studies 
should include testing wood nailing in outside circums-
tances.
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